Finding a minimum independent dominating set in a permutation graph
نویسندگان
چکیده
We give an 0 (nlogln) [ime algorirnm for finding a minimum independem dominating se[ in a pennmation graph. TItis improves on ilie previous D(n 3) time algorictun known for solving tllis problem [4]. .,. Dept of CompUlcr Sci., Purdue Univ., West Gf:tyelle, IN 47907. Rcso::trch ~upported by ONR. Contr:lct NOOOI-l-34-K. 0502:md NSF Gl':tnl DCR-8451393, wilh matching funds from AT&T. • o.:pt of MaihCiT\:tllcs, Universily oflllinois, Chil;;lgo, II. 60614. + Dept of CompUler Science, University of Oll:twa, Oll.:l.w:t. Ont:tno, Cm:td:l..
منابع مشابه
Finding Shortest Maximal Increasing Subsequences and Domination in Permutation Graphs
In this paper we present an algorithm with O(n log2n) complexity to find a shortest maximal increasing subsequence of a sequence of numbers. As a byproduct of this algorithm a O(n log2n) algorithm to find a minimum (weight) independent dominating set in permutation graphs is obtained, this compares favorable with the previous O(n3) algorithms known to solve
متن کاملMixed Roman domination and 2-independence in trees
Let $G=(V, E)$ be a simple graph with vertex set $V$ and edge set $E$. A {em mixed Roman dominating function} (MRDF) of $G$ is a function $f:Vcup Erightarrow {0,1,2}$ satisfying the condition that every element $xin Vcup E$ for which $f(x)=0$ is adjacentor incident to at least one element $yin Vcup E$ for which $f(y)=2$. The weight of anMRDF $f$ is $sum _{xin Vcup E} f(x)$. The mi...
متن کاملAn Optimal Algorithm for Finding the Minimum Cardinality Dominating Set on Permutation Graphs
Given a permutation graph G with its corresponding permutation , we present an algorithm for nding a minimum cardinality dominating set for G. Our algorithm runs in O(n) time in amortized sense where n is the number of vertices in G. Hence, it is optimal. The best previous result is an O(n log log n) algorithm. ? 2000 Elsevier Science B.V. All rights reserved.
متن کاملGlobal Forcing Number for Maximal Matchings under Graph Operations
Let $S= \{e_1,\,e_2, \ldots,\,e_m\}$ be an ordered subset of edges of a connected graph $G$. The edge $S$-representation of an edge set $M\subseteq E(G)$ with respect to $S$ is the vector $r_e(M|S) = (d_1,\,d_2,\ldots,\,d_m)$, where $d_i=1$ if $e_i\in M$ and $d_i=0$ otherwise, for each $i\in\{1,\ldots , k\}$. We say $S$ is a global forcing set for maximal matchings of $G$ if $...
متن کاملA polynomial-time algorithm for the paired-domination problem on permutation graphs
4 A set S of vertices in a graph H = (V, E) with no isolated vertices is a paired-dominating 5 set of H if every vertex of H is adjacent to at least one vertex in S and if the subgraph 6 induced by S contains a perfect matching. Let G be a permutation graph and π be its 7 corresponding permutation. In this paper we present an O(mn) time algorithm for finding 8 a minimum cardinality paired-domin...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Discrete Applied Mathematics
دوره 21 شماره
صفحات -
تاریخ انتشار 1988